Ultraflexible Organic Devices for Biomedical Applications

Takao Someya
The University of Tokyo, Tokyo, Japan.
Outline

- Introduction
- Ultrathin OTFT, OPV & OLED
- Emerging applications
- Summary
Flexible Organic Electronics

OLED display
Sony

OLED lighting
OSRAM

Organic RFID tag
Poly IC

Organic Photovoltaic
Heliatek
Robotic
E-skin

E-skin System

Significant reduction of the number of wirings

1,000,000 = 1,000 \times 1,000 \text{ (active matrix)}

1,024 = 2^{10} \text{ (decoder & selector)}

1,000,000 wirings \rightarrow \sim 10+10

Power consumption of active matrix driving

Active matrix configuration shows power consumption much lower than passive matrix.

<table>
<thead>
<tr>
<th></th>
<th>Passive matrix (w/o TFT)</th>
<th>Active matrix (w/ TFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 x 64</td>
<td>0.6mW</td>
<td>0.1mW</td>
</tr>
<tr>
<td>1k x 1k</td>
<td>130mW</td>
<td>1.3mW</td>
</tr>
</tbody>
</table>
Robots with sensitive skins will feel and even respond to a person’s warmth while shaking hands, consequently letting people feel that robots are warmer.
Ultraflexible organic devices
World’s thinnest and lightest OTFT (3g/m²)

Amazing robustness: Crumpling

Minimum bending radius $\sim 5\mu m$
Stretchable organic transistors
Crumpled organic integrated circuits

Bending radius

R\text{=}15 \ \mu m

R\text{=}20 \ \mu m

R\text{=}18 \ \mu m

R\text{<}10 \ \mu m

Cross-sectional TEM
World’s thinnest and lightest OPV

TV program on December, 2012
"Chikyu Astech - Solar Cell on Thin Film"
Stretchable OLED

Brightness: 100 cd/m² Stretching >100%!

- Light-emitting device that fits 3D surfaces
- Light source health-monitoring sensors

Flexible Electronics for Biomedical Applications

In-vitro neural interface

S. Lacour, S. Wagner, Barclay MorrisonIII et al

Medical sensors & lighting

Intelligent balloon catheter

Epidermal electronic skin

J. Viventi, J. A. Rogers et al,

High-sensitive electronic skin

K. Takei, J. Ali

Chemical sensors

Neural interfaces

Holst Centre

http://www.holstcentre.com/

Artificial skin

Multifunctional wearable devices

Dae-Hyeong Kim,

Neural interfaces

Multifunctional wearable devices

Dae-Hyeong Kim,

Wearable electronics

IMEC: ECG patch sensor

ECG measurement result can be sent to doctors through Bluetooth and Internet.

http://www.youtube.com/watch?v=iv7Wlly_W0Q
John A Rogers’s Flex Devices

From Robotics to Human

Bionic Skins (2013)

T. Someya et al., PNAS 102, 12321 (2005).

Thickness: 1/1000

t=1~2 mm

�t=2μm
Surface electromyogram monitoring

Fuketa, et. al., IEEE/ISSCC2013 #6.4.

64 channel amp. array

Current source

Bias Amplifier

Source follower

EMG Electrode

Off-sheet

On-sheet

OUT0 OUT1 OUT7

Block00 Block01 Block07

Block10 Block11 Block17

Current source

Bias Amplifier

Source follower

EMG Electrode

Off-sheet

On-sheet

OUT0 OUT1 OUT7

Block00 Block01 Block07

Block10 Block11 Block17
Electromyogram measurement

For stress-free healthcare-monitoring and welfare IT

Fuketa, et. al., IEEE/ISSCC2013 #6.4.
Implantable organic amplifier

Flexible: $R < 10 \ \mu m$

Weight: $3 \ \text{g/m}^2$

Total thickness: $2.5 \ \mu m$
(w/ encapsulation)

Large-area coverage: $50 \times 50 \ \text{mm}^2$
Imperceptible electronics

Applications
Medical IT
Welfare IT
Digital Healthcare

Specifications
The lightest (3 g/m²)
The thinnest (2μm)

What
Electromyogram
Electrocardiogram
Body temperature
Heart rate
Blood pressure

Where
Everyday life
During exercise
At hospital
Acknowledgements

T. Sakurai (T Tokyo)
T. Isoyama (U Tokyo)
M. Takamiya (U Tokyo)

Funding
JST/ERATO
JST/CREST
NEDO JAPERA

SAM
NEXSAFS
Ultrathin
Animal

Elastic conductors

M. Hirata, MD
Osaka U, Hospital
Brain surgery
BMI

H. Onodera, MD
University of Tokyo,
Footprint

H. Klauk (MPI)
Lynn Loo (Princeton)
S. Bauer (JKU)

M. Sekino (U Tokyo)

Y. Abe, MD
U Tokyo, Medicine
Animal Experiment
Artificial Hearts
Summary

The frontier of organic electronics

Today: OLED Display & Lighting
OPV

Tomorrow: Healthcare / Medical

Uniqueness of organic devices

Ultralight, Ultrathin ⇒ Minimum invasiveness
Flexible, Durable ⇒ High reliability &
High sensitivity

Emerging applications

Digital Healthcare
Medical IT
Welfare IT