Application of Smart Systems for a Better Life

Prof. Dr. Thomas Gessner

Fraunhofer Institute for Electronic Nano Systems ENAS

Center for Microtechnologies (ZfM) at Chemnitz University of Technology

WPI-AIMR Tohoku University

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

The Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

Our Customers:

- Industry
- Service sector
- Public administration

Fraunhofer is the largest organization for applied research in Europe

- 67 institutes and independent research units
- The majority of the more than 23,000 staff are qualified scientists and engineers
- More than 70 percent of this research revenue derives from contracts with industry and from publicly financed research projects.
- Almost 30 percent is contributed by the German federal government and the Laender governments in the form of institutional financing.
- International collaboration through representative offices in Europe, the US, Asia and the Middle East

Main working fields

International Offices of Fraunhofer ENAS:

→ Since 2012 Project-Center in Sendai

CHEMNIT

- Since 2002 Shanghai, China
- Since 2007

Manaus, Brazil

Systems integration by using of micro and nano technologies

- MEMS/NEMS design
- Development of MEMS/NEMS
- MEMS/NEMS test
- System packaging/waferbonding
- Back-end of Line technologies for micro and nano electronics
- Process and equipment simulation
- Micro and nano reliability
- Printed functionalities
- Advanced system engineering

Technology Campus

© Fraunhofer ENAS

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Definition Smart Systems

- self-sufficient intelligent technical systems or subsystems with advanced functionality, enabled by underlying micro- nano- and biosystems and other components
- able to sense, diagnose, describe, qualify and manage a given situation
- bring together sensing, actuation and informatics / communications

- their operation being further enhanced by their ability to mutually address, identify and work in consort with each other
- highly reliable, often miniaturised, networked, predictive and energy autonomous
- autonomous or collaborative systems

First Generation

- sensing and actuation
- signal conditioning and processing
- wireless/wired communication
- hybrid and monolithic integration, system on board, chip on board

Second Generation

- multifunctional sensing, actuation and inference
- predictive and adaptive
- networking function
- partially autonomous
- partially 3D-integration

Third Generation

- self-calibrating and self healing sensors and actuators
- artifical intelligence
- self-oranized networks
- energy autonomous
- complete 3D-integration

Source: journal Internet of things

First Generation

application

. . .

- medical engineering
- automotive

Second Generation

application

- medical engineering
- automotive
- consumer
- monitoring ...

Third Generation

application - internet of things

- smart home
- smart infrastructure
- smart production
- smart grid, ...

Smart Systems in Everyday Life

© Fraunhofer ENAS

The Enabling Factors of Smart Systems

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Technologies for Si-based high performance MEMS

- AIM technology: inclination and vibration sensors, RF switch
- BDRIE technology: gyroscopes
- Bulk technology: tunable infrared filters, micro mirrors
- System integration thin film encapsulation, wafer bonding

Core technology: AIM (Air gap Insulated Microstructure)

High Aspect Ratio MEMS for 3D sensing

- Two-step etch process, can be integrated in existing HAR technologies (e.g. AIM)
- 3D Sensor system with ASIC CVC1.1EE from Gemac for measurement range ± 50 g
- high sensitivity, low transverse sensitivity and outstanding temperature stability regarding sensitivity and offset temperature coefficients.

Details of seismic mass and vertical detection electrodes

Application of robust acceleration sensors - for integration in wheel bearing of trains

Requirements for monitoring system

- High precision and robust MEMS acceleration sensors
- Intelligent data processing
- Integration in the wheel bearing of trains

Challenges:

- Temperature stability
- Accuracy

Not met by conventional systems

Angular rate sensors based on BDRIE technology

300

250

[bd] 200 150

× 100

50

6960 8

6961

Prototypes of microgyroscopes (single axis, x,y,z)

- High aspect ratio, decoupled structures for high performance
- Vacuum package for high Q resonators (Q > 100,000)
- Co-operation with Northroup Grumman LITEF GmbH, Gyrooptics, GEMAC, EDC

Details of comb drive and sense elements (2 µm gaps, 50 µm height)

Q factor measurement of vacuum packaged gyroscopes

MEMS NIR/IR-Spectrometer irSys® E

MEMS spectrometers

enable realizing smart systems to supplement or replace traditional technology for particular demands

- Advantages:
 - enable miniaturization and portability
 - flexibility
 - cost efficiency

Properties - irSys® E

- High wavelength repeatability (< 0.1 nm)</p>
- Low stray light (<30dB)</p>
- Measurement throughput: 80 spectra /minute
- Suitable for relatively harsh environments

CHEMNIT

Functional principle irSys® E

irSys® E Mechanical Set-up; micro mirror

MEMS NIR/IR-Spectrometer irSys® E

Configurable Optics and Sensors

- Spectral range (grating, detector)
- Spectral resolution (input slit width)
- Sensitivity: (detectors (uncooled; 1TE-; 2TE -cooled))
- Flexible sample presentation (direct/diffuse reflection, transmission)

Spectral efficiency of an irSys E 2.1 spectrometer

Spectrometer configurations				
	irSys®E 1.7	irSys®E 2.1	irSys®E 2.4	irSys®E 4.9
Spectral range	6601730 nm	9102100 nm	9102390 nm	24004900nm
Detectors	Si + InGAs	2x InGAs	2x InGAs	1 x MCZT
Spectral resolution	8 nm FWHM	11 nm FWHM	11 nm FWHM	12nmFHWM
SNR (single shot)	typically 7.000:1	typically 2.500:1	typically 1000:1	typically 1000:1

MEMS NIR/IR spectrometer – Realized applications Food safety

Example: detection of melamine in milk powder

- many food scandals every year worldwide (EU: every 3 month on average)
- melamine contaminated milk powder is a serious issue
 - causes toxic problems, kidney failures
 - thousands babies became ill, 6 die after being fed with contaminated milk powder
- frequent control (using compact, cost efficient analytical devices) can avoid such accidents and ensure product safety
 Milk powder

Qualitative detection of melamine-concentrations until 0,0001% at least are possible using NIR MEMS spectrometer

MEMS NIR/IR spectrometer – Realized applications Determination of drugs (heroine, amphetamine, etc.)

Object of investigation:

- Samples of heroine and methamphetamine
- Wavelength range:
- 660...1730nm

Measuring technique:

diffuse reflection

heroine spectra

Qualitative differentiation by principle component analysis

Quantitative analysis by PLS- calibration

MEMS NIR/IR spectrometer - Realized applications (examples)

Forensic

Identification of heroin and methamphetamine

Qualitative and quantitative determination of active components and supplements using diffuse reflectance

Spectroscopic Ellipsometry

Determination of optical constants of layer and layer stacks by measuring polarization change

tional used FTIR- spectrometer

Medicine

Determination of fecal fat

CHEMNIT7

••• Important to get evidence for malassimilation and for estimating the efficacy of treat-ment with enzymatic enzymes (e.g. at mucoviscidosis)

Fuel Gas Analysis

Direct identification of natural gas constituents to determine fuel value

Improvement of the process and product quality (e.g. operation of industrial firing process)

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Challenges for power supply

- Reliable power supply
- Economic efficiency
- Ressource efficiency
- Climate protection

TECHNISCHE UNIVERSITÄT CHEMNITZ

Why power line monitoring

<u>Problem</u>: increasing supply of renewable energies (e.g. solar and wind) and its high fluctuations

- Distribution of power from renewable sources is difficult (transport bottleneck)
- Safety margin (distance between power line and ground) reduce capacity utilization

<u>Goal</u>: online monitoring of the power lines (temperature of the conductor, magnitude of the current, conductor sag)

Monitoring system allows evaluation and optimization of the capacity utilization

CHEMNIT7

ikrotechnologier

ASTROSE Autarkic sensor network for monitoring of power lines

© Fraunhofer ENAS

Power line monitoring

Sensor nodes suspended at intervals of a few hundred meters along the high-voltage power line (e.g. at 110 kV or 380 kV)

Transmission of sensor values (inclination, temperature, current along the chain to a base station

- Self-organization of the network
- Wireless communication in 2.4 GHz frequency band
- Energy required to operate the system is harvested from the electrostatic fringing field of the power line

Sensor node

Smart system contains sensors for measuring inclination, current and temperature.

Microcontroller board with wireless transceiver

TECHNISCHE UNIVERSITÄT CHEMNITZ

Characterization

Field test at a 110 kV power line

Measurement of temperature and inclination

- Approval of the concept: power transmission can be monitored by measurement of inclination
- Wireless communication in 2.4 GHz frequency band
- Energy needed is harvested

Correlation between temperature and inclination

ASTROSE

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Smart Microfluidic Systems – 3 Generations

Smart Microfluidic Systems – 3 Generations

AJ eBiochip

Abbott iStat

First Generation

- Hybrid devices
- Sensing, external actuation
- signal conditioning and processing
- wireless/wired communication

Second Generation

- Full integration of sensing and actuation
- Integrated Sample Preparation
- Integrated Electronics / Standard interfaces and Technologies (e.g. I²C communication on ChipCard)

Third Generation

- TeleMedicine / "Dr. Phone"
- Remote Diagnostics
- Self-powered, smart disposables (including biosensor, actuators, power source, electronics, communication)

2000

....

2015

. . . .

Smart Microfluidic Systems: Functions to be integrated

Application fields

- Detection of tropical deseases like Chagas
- Detection of cancer
- Influenca diagnostics

8 European and 5 Brazilian partners from research and industry

CHEMNITZ

Background of project

6

What is Chagas disease?

- Caused by protozoan parasite Trypanosoma cruzi
- Transmitted by Triatoma infestans ("Kissing bug") or through blood
- One of the "top neglected diseases" (WHO 2010) with about 15-17 Mio people infected worldwide
- Ranked at the 4th cause of death within tropical diseases

Goal:

Detection of disease in the acute and chronic phase

CHEMNIT7

Combined protein and nucleic acid testing in pocket size cartridge

Microfluidic cartridge

Goal of microfluidic cartridge development

- Integration of complete sample preparation:
 - Sample take up
 - Lysis of cells
 - DNA isolation (binding, washing and elution)
- Integration of RT-PCR chip
 - Distribution to RT-PCR chambers

TECHNISCHE UNIVERSITÄT

CHEMNITZ

- Integration of lateral flow based immuno assay
- Reagent storage

DNA extraction chip → purification lysed sample

Real time PCR-Chip (ST Italy) → highly sensitive detection

PodiTrodi – Detection of Chagas

Sample BioAssay: CRP- and PSA Immunoassay (ELISA)

Readout Instrument (Fraunhofer IPM) and CRP assay (Fraunhofer IBMT)

b) CRP before assay

d) PSA before assay

c) CRP after assay

e) PSA after assay

Chipcard for Influenza Diagnostics

TECHNISCHE UNIVERSITÄT

CHEMNITZ

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Cholesterol detection in the blood – European SIMS project

Develop a smart, miniaturised sensing system through the integration of

- a nanosensor
- a printed low cost display
- a mobile phone interface
- a printed battery
- organic circuitry

vision 2010

Current demonstrator

- printed battery
- EC display

sensor

Awarded by OE-A "Best publicly funded project demonstrator"

at LOPE-C 2013

Aim: standalone application

Outline

- 1. Introduction Fraunhofer ENAS
- 2. Smart Integrated Systems
- 3. Examples from Fraunhofer ENAS
 - High performance MEMS increase safety and security
 - High performance MEMS for smart grid applications
 - Smart medical systems
 - Based on polymer technologies
 - Based on printing technologies
- 4. Conclusion

Conclusion

- Smart Systems will provide solutions to address grand challenges and risks for mankind in social, economic and environmental terms
- Progressive development of Smart Systems characterized by their increased autonomy
- Smart System Integration as a cross-cutting technology is the technology of the future

International Conference & Exhibition on integration issues of miniaturized systems – MEMS, MOEMS, ICs and electronic components smartsystems

9. Conference: 11-12 March 2015, Copenhagen, Denmark

integration

Part of the Activities of:

Chair:	Prof. Dr. T.Gessner, Fraunhofer ENAS
Co-Chair:	Dr. Guenter Lugert, Siemens AG and EPoSS

CHEMNIT7

